r. Nd	Questions	option1	Option2	Option3	Option4	Answer
1	Opportunity loss table will contain	(i) \& (ii)	(ii) \& (iii)	(iv) \& (i)	$\begin{aligned} & \text { (i) \& (ii) \& } \\ & \text { (iii) \& (iv) } \end{aligned}$	$\begin{aligned} & \text { (i) \& (ii) \& } \\ & \text { (iii) \& (iv) } \end{aligned}$
2	The data collected for the first time is known as	Values	Information	Secondary data	Primary Data	Primary Data
3	To construct the opportunity loss/regret table from a pay-off table first find the maximum pay off under each	Optilistic approach	Pessimistic approach	None	 (b)	Optilistic approach
4	If A and B are two events which have no points in common, the events are	$\mathrm{P}(\mathrm{AB})$	$\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$	$\mathrm{P}(\mathrm{AB})$	P (A) P (B)	P (AB)
5	Mode of 30, 50, 40, 30, 25, 20, 30, $45,15,28$ is	Dispersion	Averages	Frequency	No. of Observations	Averages
6	When the area is to be covered is vast and periodic data is required, its better to adopt	Direct personal Investigatio n	Indirect Oral interview	Questionna ires	Through local agencies	Through local agencies
7	If there are two groups with 40 observations and 60 observations with arithmetic means 120 and 80 respectively, the combined arithmetic mean of 100 observations is	40	52	43	56	43
8	The various steps involved in the decision theory approach are, i) Acts (or) courses of action (or) strategy (or) decision alternatives ii) States of nature (or) events iii) Pay of table iv) Decision	Given	None given	None	 (b)	Given
9	The grouped data are called	Primary data	Secondary Data	Raw data	Difficult to tell	Secondary Data
10	If we can place a monetary gain (or) loss to a consequence (or outcome), then it is called a pay off (or worth) of the outcome. The outcome is the combination of each act with each possible states of nature.	Maximin Criterion	Minimax criterian	 (b)	None	 (b)
11	If the maximum payoffs for four acts $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3$ and A 4 are $8,-25,-40$ and zero respectively, then the best decision according to the minimax criterion is	State of nature	Acts	 (b)	None	State of nature
12	The median of the given series of observations 46, 33, 34, 38, 40, 52, 56,58 is	Median	Mode	Arithmetic Mean	Quartiles	Arithmetic Mean
13	If there are many extreme scores on all examination, the dispersion is	Small	Large	Normal	Symmetrical	Large
14	In EMV method we select the best act for which EMV has \qquad values.	FALSE	TRUE	None	 (b)	TRUE
15	In a survey, the data is collected in	Random manner	Systematic manner	Haphazard manner	none of thses	Systematic manner
16	The mean deviation of the scores 12, 15,18 is	6	0	3	2	2
17	The word ogive is also used for	Frequency polygon	$\begin{gathered} \hline \text { Cumulativ } \\ \mathrm{e} \\ \text { frequency } \\ \text { polygon } \\ \hline \end{gathered}$	Frequency Curve	Histogram	$\begin{gathered} \hline \text { Cumulativ } \\ \mathrm{e} \\ \text { frequency } \\ \text { polygon } \\ \hline \end{gathered}$
18	The sampling unit in which the population is divided must be	Exclusive	Exhaustive	Exclusive and Exhaustive both	none of thses	Exclusive and Exhaustive both

19	Half of the difference between upper and lower quartiles is called:	Interquartile range	Quartile deviation	Mean Deviation	Standard Deviation	Quartile deviation		
20	If $\mathrm{Y}=\mathrm{aX} \pm \mathrm{b}$, where a and b are any two numbers and $a \neq 0$, then the range of Y values will be:	Range(X)	$\begin{gathered} \text { a range }(\mathrm{X})+ \\ b \end{gathered}$	$\begin{gathered} \text { a range }(\mathrm{X})- \\ b \\ \hline \end{gathered}$	\|a	range(X)	\|a	range(X)
21	The sum of 5 items is 33 and the sum of their squares is 235 then the variance is	4.4	3.44	2.33	0	3.44		
22	The value of the $25^{\text {th }}$ percentile is same as the value of the	30	25	40	50	30		
23	\qquad can be used for further algebraic treatment.	14.54 years	13.98 years	13.46 years	12.94 years	13.98 years		
24	If standard deviation of the values 2 , $4,6,8$ is 2.236 , then standard deviation of the values $4,8,12,16$ is:	0	4.472	4.236	2.236	4.472		
25	Pessimistic approach represents.	Unknown	Known	 (b)	None	Known		

